A Note on Littlewood-Paley Decompositions with Arbitrary Intervals

Per Sjölin

Department of Mathematics, University of Uppsala, S-752 38 Uppsala, Sweden Communicated by V. Totik

Received September 24, 1984; revised May 20, 1985

DEDICATED TO THE MEMORY OF GÉZA FREUD

If I is an interval in \mathbb{R} we define an operator S_{I} by setting $\left(S_{I} f\right)^{\wedge}=\chi_{I}, \hat{f}$, where \hat{f} denotes the Fourier transform of f. Let $\left(I_{k}\right)_{1}^{\infty}$ be a sequence of disjoint intervals and set

$$
\Delta f(x)=\left(\sum_{1}^{\infty}\left|S_{l_{k}} f(x)\right|^{2}\right)^{1 / 2} .
$$

Rubio de Francia [2] has proved the following theorem.
Theorem A. Assume that $2 \leqslant p<\infty$. Then there exists a constant C_{p} such that

$$
\begin{equation*}
\|\Delta f\|_{p} \leqslant C_{p}\|f\|_{p}, \quad f \in L^{p}(\mathbb{R}) . \tag{1}
\end{equation*}
$$

It is also proved that C_{p} may be chosen independently of the sequence $\left(I_{k}\right)_{1}^{\infty}$. We shall give here an alternative proof of the basic inequality in the proof of (1).

A reduction argument in [2] shows that in proving the theorem one may assume that

$$
\begin{equation*}
\sum_{1}^{\infty} \chi_{8 / k}(x) \leqslant C . \tag{2}
\end{equation*}
$$

We let $\left(I_{k}\right)_{1}^{\infty}$ be a sequence satisfying (2) and let $\left(I_{k}^{j}\right)_{j}$ denote the intervals I in the sequence which satisfy $2^{k} \leqslant|I|<2^{k+1}, k \in \mathbb{Z}$. Choose integers n_{k}^{j} such that $n_{k}^{j} 2^{k} \in I_{k}^{j}$. Then choose a function φ in the Schwartz class \mathscr{S} such that $\hat{\varphi}(\tilde{\xi})=1,|\xi| \leqslant 2$, and $\hat{\varphi}(\xi)=0,|\xi| \geqslant 3$, where

$$
\hat{\varphi}(\xi)=\int e^{-i 2 \pi \xi x} \varphi(x) d x .
$$

We then set $\varphi_{k}^{j}(x)=2^{k} \varphi\left(2^{k} x\right) e^{i 2 \pi 2^{k} k_{k}^{j} x}$ so that

$$
\left.\left(\varphi_{k}^{\prime}\right) \hat{(\xi}\right)=\hat{\varphi}\left(2^{-k} \xi-n_{k}^{j}\right)= \begin{cases}1, & \xi \in I_{k}^{j} \\ 0, & \xi \notin 8 I_{k}^{j} .\end{cases}
$$

We define operators G and M_{q} by setting

$$
G f(x)=\left(\sum_{k, j}\left|\varphi_{k}^{j} * f(x)\right|^{2}\right)^{1 / 2}
$$

and

$$
M_{q} f(x)=\left[M\left(|f|^{q}\right)(x)\right]^{1 / q}, \quad 1 \leqslant q<\infty,
$$

where M denotes the Hardy-Littlewood maximal operator. The main step in the proof in [2] is the inequality

$$
\begin{equation*}
(G f)^{*}(x) \leqslant C M_{2} f(x), \tag{3}
\end{equation*}
$$

which is proved for every bounded function f with compact support. Here $(G f)^{*}$ denotes the sharp maximal function of $G f$ (see Fefferman and Stein [1]).

We shall give here an alternative proof of (3). Let I_{0} denote an interval and assume that $x_{0} \in I_{0}$. We have to prove that

$$
\begin{equation*}
\frac{1}{\left|I_{0}\right|} \int_{I_{0}}\left|G f(x)-(G f)_{I_{0}}\right| d x \leqslant C M_{2} f\left(x_{0}\right), \tag{4}
\end{equation*}
$$

where we use the notation

$$
g_{I}=\frac{1}{|I|} \int_{I} g d x .
$$

It is clearly sufficient to prove that there exists a constant $a=a\left(x_{0}, I_{0}, f\right)$ such that

$$
\begin{equation*}
\frac{1}{\left|I_{0}\right|} \int_{I_{0}}|G f(x)-a| d x \leqslant C M_{2} f\left(x_{0}\right) . \tag{5}
\end{equation*}
$$

We now fix x_{0} and I_{0} and prove (5). First let k_{0} be determined by the inequality $2^{-k_{0}-1}<\left|I_{0}\right| \leqslant 2^{-k_{0}}$. Then write $f=g+h$, where $g=f \chi_{2 I_{0}}$. We shall prove that (5) holds with

$$
a=\left(\sum_{k \leqslant k_{0}+2}\left|\varphi_{k}^{j} * h\left(x_{0}\right)\right|^{2}\right)^{1 / 2} .
$$

Using the triangle inequality in l^{2}, we obtain

$$
\begin{aligned}
|G f(x)-a| \leqslant & |G f(x)-G h(x)|+|G h(x)-a| \leqslant G g(x) \\
& +\left(\sum_{k \geqslant k_{0}+3}\left|\varphi_{k}^{j} * h(x)\right|^{2}\right)^{1 / 2}+\left(\sum_{k \leqslant k_{0}+2}\left|F_{k}^{j}(x)\right|^{2}\right)^{1 / 2} \\
& =A(x)+B(x)+C(x)
\end{aligned}
$$

where

$$
F_{k}^{j}(x)=\int 2^{k}\left(\varphi\left(2^{k} x-2^{k} y\right)-\varphi\left(2^{k} x_{0}-2^{k} y\right)\right) e^{-i 2 \pi 2^{k} n_{k}^{j} y} h(y) d y
$$

Invoking the Plancherel theorem we conclude that

$$
\begin{align*}
\frac{1}{\left|I_{0}\right|} \int_{I_{0}} A(x) d x & \leqslant \frac{1}{\left|I_{0}\right|}\left(\int_{I_{0}} A^{2} d x\right)^{1 / 2}\left|I_{0}\right|^{1 / 2} \leqslant \frac{1}{\left|I_{0}\right|^{1 / 2}} C\left(\int|g|^{2} d x\right)^{1 / 2} \\
& =C\left(\frac{1}{\left|I_{0}\right|} \int_{2 I_{0}}|f|^{2} d x\right)^{1 / 2} \leqslant C M_{2} f\left(x_{0}\right) \tag{6}
\end{align*}
$$

since $\sum\left|\left(\varphi_{k}^{j}\right)\right|^{2} \leqslant C$.
We shall now estimate $B(x)$. We first set $J_{k}^{\prime}=\left[12^{-k-1}, l^{-k-1}+2^{-k}\right]$ for $l \in \mathbb{Z}, k \in \mathbb{Z}$. Then choose $\psi_{k}^{l} \in C_{0}^{\infty}(\mathbb{R})$ such that supp ψ_{k}^{l} is contained in the interior of $J^{\prime}, \sum_{l} \psi_{k}^{\prime}=1$, and

$$
\left|D^{m} \psi_{k}^{\prime}\right| \leqslant C_{m} 2^{k m}, \quad m=0,1,2, \ldots
$$

We now assume that $k \geqslant k_{0}+3$ and $x \in I_{0}$. We have

$$
\begin{aligned}
\left|\varphi_{k}^{j} * h(x)\right| & =\left|\int 2^{k} \varphi\left(2^{k} x-2^{k} y\right) e^{-i 2 \pi 2^{k} n_{k}^{\prime} y} h(y) d y\right| \\
& =\left|\sum_{l} \int_{J_{k}^{\prime}} 2^{k} \varphi\left(2^{k} x-2^{k} y\right) e^{-i 2 \pi 2^{k} n_{k} y} \psi_{k}^{\prime}(y) h(y) d y\right|
\end{aligned}
$$

Expansion in Fourier series yields

$$
\varphi\left(2^{k} x-2^{k} y\right) \psi_{k}^{\prime}(y)=\sum_{n} a_{n}(x, l) e^{i 2 \pi 2^{k} n y}, \quad y \in J_{k}^{\prime}
$$

where

$$
a_{n}(x, l)=2^{k} \int_{J_{k}^{\prime}} \varphi\left(2^{k} x-2^{k} y\right) \psi_{k}^{\prime}(y) e^{-i 2 \pi 2^{k} n y} d y
$$

It follows that

$$
\left|\varphi_{k}^{j} * h(x)\right| \leqslant \sum_{l} \sum_{n}\left|a_{n}(x, l)\right|\left|c_{n_{k}^{j}-n}\left(h, J_{k}^{l}\right)\right|,
$$

where

$$
c_{n}\left(h, J_{k}^{l}\right)=2^{k} \int_{J_{k}^{\prime}} e^{-i 2 \pi 2^{k} n y} h(y) d y
$$

If $J_{k}^{l} \subset 2 I_{0}$ then h vanishes on J_{k}^{l} and if $J_{k}^{\prime} \not \subset 2 I_{0}$ we integrate by parts and obtain

$$
\begin{aligned}
\left|a_{n}(x, l)\right| & \leqslant 2^{k} \frac{1}{2^{2 k} n^{2}} \int_{J_{k}^{\prime}}\left|D_{y}^{2}\left[\varphi\left(2^{k} x-2^{k} y\right) \psi_{k}^{l}(y)\right]\right| d y \\
& \leqslant C \frac{2^{k}}{n^{2}} \int_{J_{k}^{\prime}} \frac{1}{2^{2 k}|x-y|^{2}} d y \leqslant C \frac{1}{n^{2} 2^{2 k} d\left(x_{0}, J_{k}^{l}\right)^{2}}, \quad n \neq 0, \quad x \in I_{0}
\end{aligned}
$$

since $|x-y| \geqslant 2^{-k_{0}-3}$ for $y \in J_{k}^{l}$. Here $d\left(x_{0}, J\right)$ denotes the distance between x_{0} and J.

A similar estimate holds for $n=0$ and we therefore have

$$
\left|a_{n}(x, l)\right| \leqslant C \frac{1}{\left(1+n^{2}\right) 2^{2 k} d\left(x_{0}, J_{k}^{l}\right)^{2}}, \quad n \in \mathbb{Z}, \quad x \in I_{0}
$$

for $J_{k}^{I} \not \subset 2 I_{0}$. We now set

$$
C_{m}\left(h, J_{k}^{l}\right)=\sum_{n=-\infty}^{\infty} \frac{1}{1+n^{2}}\left|c_{m+n}\left(h, J_{k}^{l}\right)\right|, \quad m \in \mathbb{Z}
$$

and it follows that

$$
\left|\varphi_{k}^{j} * h(x)\right| \leqslant C \sum_{l} \frac{1}{2^{2 k} d\left(x_{0}, J_{k}^{l}\right)^{2}} C_{n_{k}^{\prime}}\left(h, J_{k}^{l}\right)
$$

An application of the Schwarz inequality shows that

$$
\left|\varphi_{k}^{j} * h(x)\right|^{2} \leqslant C \sum_{l} \frac{1}{2^{2 k} d\left(x_{0}, J_{k}^{l}\right)^{2}} C_{n_{k}^{\prime}}\left(h, J_{k}^{l}\right)^{2}
$$

We shall now use the estimate

$$
\sum_{m} C_{m}\left(h, J_{k}^{l}\right)^{2} \leqslant C 2^{k} \int_{J_{k}^{\prime}}|h|^{2} d y
$$

which is a consequence of the Parseval relation. We obtain

$$
\begin{aligned}
\sum_{j}\left|\varphi_{k}^{\prime} * h(x)\right|^{2} & \leqslant C \sum_{l} \frac{1}{2^{2 k} d\left(x_{0}, J_{k}^{\prime}\right)^{2}} \sum_{j} C_{r_{k}}\left(h, J_{k}^{l}\right)^{2} \\
& \leqslant C \sum_{l} \frac{1}{2^{2 k} d\left(x_{0}, J_{k}^{\prime}\right)^{2}} 2^{k} \int_{J_{k}^{\prime}}|h|^{2} d y \\
& \leqslant C \sum_{l} \int_{J_{k}^{\prime}} \frac{2^{k}}{2^{2 k}\left|x_{0}-y\right|^{2}}|h(y)|^{2} d y \\
& \leqslant C \int \frac{2^{k}}{2^{2 k}\left|x_{0}-y\right|^{2}}|h(y)|^{2} d y .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\sum_{\substack{j \\
k \geqslant k_{0}+3}}\left|\varphi_{k}^{j} * h(x)\right|^{2} & \leqslant C \int \frac{2^{k_{0}}}{2^{2 k_{0}}\left|x_{0}-y\right|^{2}}|h(y)|^{2} d y \\
& \leqslant C \int 2^{k_{0}} \psi\left(2^{k_{0}}\left(x_{0}-y\right)\right)|h(y)|^{2} d y \leqslant C M\left(|h|^{2}\right)\left(x_{0}\right) \\
& \leqslant C M\left(|f|^{2}\right)\left(x_{0}\right), \quad x \in I_{0}
\end{aligned}
$$

where

$$
\psi(y)=\frac{1}{1+y^{2}}
$$

We conclude that

$$
\begin{equation*}
B(x) \leqslant C M_{2} f\left(x_{0}\right), \quad x \in I_{0} \tag{7}
\end{equation*}
$$

It remains to estimate $C(x)$ and we therefore assume $k \leqslant k_{0}+2$. We have

$$
F_{k}^{j}(x)=\sum_{l} \int_{J_{k}^{\prime}} 2^{k}\left(\varphi\left(2^{k} x-2^{k} y\right)-\varphi\left(2^{k} x_{0}-2^{k} y\right)\right) \psi_{k}^{l}(y) e^{-i 2 \pi 2^{k} n_{k}^{\prime} y} h(y) d(y)
$$

and arguing as above we obtain

$$
\left|F_{k}^{j}(x)\right| \leqslant \sum_{l} \sum_{n}\left|b_{n}(x, l)\right|\left|c_{n_{k}^{\prime}-n}\left(h, J_{k}^{l}\right)\right|,
$$

where

$$
b_{n}(x, l)=2^{k} \int_{J_{k}^{\prime}}\left[\varphi\left(2^{k} x-2^{k} y\right)-\varphi\left(2^{k} x_{0}-2^{k} y\right)\right] \psi_{k}^{\prime}(y) e^{-i 2 \pi 2^{k} n y} d y
$$

Integrating by parts twice and using the mean value theorem we obtain

$$
\begin{aligned}
\left|b_{n}(x, l)\right| & \leqslant 2^{k} \frac{1}{2^{2 k} n^{2}} \int_{J_{k}^{\prime}}\left|D_{y}^{2}\left\{\left[\varphi\left(2^{k} x-2^{k} y\right)-\varphi\left(2^{k} x_{0}-2^{k} y\right)\right] \psi_{k}^{l}(y)\right\}\right| d y \\
& \leqslant C 2^{2 k} \frac{\left|x-x_{0}\right|}{n^{2}} \int_{J_{k}^{\prime}} \frac{1}{1+2^{2 k}\left|x_{0}-y\right|^{2}} d y \\
& \leqslant C 2^{k-k_{0}} \frac{1}{n^{2}\left(1+2^{2 k} d\left(x_{0}, J_{k}^{l}\right)^{2}\right)}
\end{aligned}
$$

for $n \neq 0, x \in I_{0}$.
An analogous estimate holds for $n=0$ and we conclude that

$$
\left|b_{n}(x, l)\right| \leqslant C 2^{k-k_{0}} \frac{1}{\left(1+n^{2}\right)\left(1+2^{2 k} d\left(x_{0}, J_{k}^{l}\right)^{2}\right)}, \quad n \in \mathbb{Z}, x \in I_{0}
$$

It follows that

$$
\left|F_{k}^{j}(x)\right| \leqslant C 2^{k-k_{0}} \sum_{l} \frac{1}{1+2^{2 k} d\left(x_{0}, J_{k}^{\prime}\right)^{2}} C_{n_{k}^{\prime}}\left(h, J_{k}^{l}\right)
$$

and an application of the Schwarz inequality shows that

$$
\left|F_{k}^{j}(x)\right|^{2} \leqslant C 2^{2\left(k-k_{0}\right)} \sum_{l} \frac{1}{1+2^{2 k} d\left(x_{0}, J_{k}^{l}\right)^{2}} C_{n_{k}^{j}}\left(h, J_{k}^{l}\right)^{2}
$$

Summing over j we obtain

$$
\begin{aligned}
\sum_{j}\left|F_{k}^{j}(x)\right|^{2} & \leqslant C 2^{2\left(k-k_{0}\right)} \sum_{l} \frac{1}{1+2^{2 k} d\left(x_{0}, J_{k}^{\prime}\right)^{2}} 2^{k} \int_{J_{k}^{\prime}}|h|^{2} d y \\
& \leqslant C 2^{2\left(k-k_{0}\right)} \int \frac{2^{k}}{1+2^{2 k}\left|x_{0}-y\right|^{2}}|h(y)|^{2} d y \\
& =C 2^{2\left(k-k_{0}\right)} \int 2^{k} \psi\left(2^{k}\left(x_{0}-y\right)\right)|h(y)|^{2} d y \\
& \leqslant C 2^{2\left(k-k_{0}\right)} M\left(|f|^{2}\right)\left(x_{0}\right)
\end{aligned}
$$

Hence,

$$
\sum_{\substack{j \\ k \leqslant k_{0}+2}}\left|F_{k}^{j}(x)\right|^{2} \leqslant C M\left(|f|^{2}\right)\left(x_{0}\right), \quad x \in I_{0}
$$

and

$$
\begin{equation*}
C(x) \leqslant C M_{2} f\left(x_{0}\right), \quad x \in I_{0} \tag{8}
\end{equation*}
$$

Inequality (5) follows from the estimates (6), (7), and (8) and thus the proof of (3) is complete.

References

1. C. Fefferman and E. M. Stein, H^{p} spaces of several variables, Acta Math. 129 (1972), 137-193.
2. J. L. Rubio de Francia, "A Littlewood-Paley inequality for arbitrary intervals," Report No. 18, Institut Mittag-Lefller, 1983.
