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If 7 is an interval in R we define an operator S, by setting (S,f) =y, /,
where f denotes the Fourier transform of f. Let (/) be a sequence of dis-
joint intervals and set

S 1/2
a0 = (15,7007
1
Rubio de Francia [2] has proved the following theorem.

THEOREM A. Assume that 2<p <. Then there exists a constant C,
such that

f4fl, < C /N,  feL(R) (H

It is also proved that C, may be chosen independently of the sequence
(I;)5°. We shall give here an alternative proof of the basic inequality in the
proof of (1).

A reduction argument in [2] shows that in proving the theorem one
may assume that

S zen(x) < C. 2)
1

We let (1,)7° be a sequence satisfying (2) and let (/]); denote the intervals /
in the sequence which satisfy 2¥ < 7] <2¥* !, k € Z. Choose integers nj such
that n/2* e I. Then choose a function ¢ in the Schwartz class # such that
@(&)=1, || <2, and ¢(£) =0, |[{| =3, where

(&)= [ e g (x) dx.
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We then set @f(x) =2 p(2%x) 2% 5o that

" ) i, i
e

We define operators G and M, by setting

1/2

Gf(x)=<z o] *f(x)(Z)
k, j

and

M, f(x)= M1, 1<g<oo,

where M denotes the Hardy-Littlewood maximal operator. The main step
in the proof in [2] is the inequality

(G )*(x) S CM, f(x), (3)

which is proved for every bounded function f with compact support. Here
(Gf)* denotes the sharp maximal function of Gf (see Fefferman and Stein

(.
We shall give here an alternative proof of (3). Let [, denote an interval
and assume that x,e/,. We have to prove that

1
77 ] 1600 = (@ dv< M o), (4)

where we use the notation

1

gl:m

Jlg dx.

It 1s clearly sufficient to prove that there exists a constant a = a(x,, Iy, f)
such that

2] 167x) —al dv < €M o), (5)

We now fix x, and [, and prove (5). First let k, be determined by the
inequality 27~ ' < |[,|<27%. Then write f=g+h, where g=fy,,. We
shall prove that (5) holds with

1/2
a=( Yy Iwi*h(xo)!2> -

k<ko+2
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Using the triangle inequality in /%, we obtain

|Gf (x) — al <1Gf(x) — Gh(x)| + |Gh(x) — a| < Gg(x)

1/2 1/2
+( » w;*h(xnz) +( 5y IFf;(x)P)
k=ko+3 k<ky+2

= A(x)+ B(x)+ C(x),

where

Fi(x)= J 24(p(25x — 24p) — (25 x0 — 2%p)) e TP R( ) dy.

Invoking the Plancherel theorem we conclude that

1 1/2
— 1/2
oAl IOA(x)dx<IIOI<J A? dx) o] A '1,2 Ulgl dx)

1

1/2
= <I—IH L:O 7 dx) < CM, f(xo), (6)

172

since l(@}) 1> <C.

We shall now estimate B(x). We first set J,=[[2 %! 2-%-14+2-¥]
for le Z, ke Z. Then choose Y% e CP(R) such that supp ¢! is contained in
the interior of J/, 3, yL =1, and

D™ < C25", m=0,1,2,..
We now assume that k> ky+ 3 and xe€l,. We have

fod bl = [ 2002t = 2) e k() dy

= {; L 25p(2x = 2y) e =2y l(y) h(y) dy‘-

Expansion in Fourier series yields
P2 x =29 Yi(y) =Y anlx, 1) >, yeli,

where

aln D=2t [, g@x =2yl ey
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It follows that
lp} * h(x)| SEZ |a@n(, DV 1, —ulhy T,
where

Calh J)=2* [ e n(y) dy.

Ik

If Ji =21, then h vanishes on J! and if J, & 21, we integrate by parts and
obtain

1
4 D] <2* 35 [, 1030025 = 29) 4001

<ct 1 1

2k
— <o
n2J‘Ji22klx__y,2dy\cn222kd(xo,J;()z: n;;é()’ XEIO,

since |x —y| =2 7%~ 3 for ye Ji. Here d(x,, J) denotes the distance between
xo and J.
A similar estimate holds for n=0 and we therefore have

1
(1+4n%) 2% d(x,, J})*’

lan(xa l)lgc nEZs XEI(),

for J, & 2I,. We now set

o

1
Cm(h, Jﬁc)z Z m|cm+n(h, Jf()l, mEZ,

n=—cwo

and it follows that

1

I xh < —_—
|(pk* (X)I CZ22kd(x0, JL)Z

!

An application of the Schwarz inequality shows that

1

J 2g —_—
ok M) < C Y s

!

We shalil now use the estimate

% ol )< C2* [ 1h1* dy,
m k



332 PER SJIOLIN

which is a consequence of the Parseval relation. We obtain

1
Z lo} * h (x)* < CZW——)-; C,,/"c(h, Ji)?

1
<C222kd( Xo J[)Z f |h'2dy

<CL[, pm N

k

<C [ I
0

It follows that

k

S loks < C [ g )y

J
kzko+3

<C f 250 (2%0(xq — y)) (»)I? dy < CM(1h]?)(x,)

M(If1*)(xo),  xelo,

where

‘P(J’)=Ty2-

We conclude that
B(x)<CM, f(x,),  xel,. (7)

It remains to estimate C(x) and we therefore assume k < kg + 2. We have

Fi(X)—ZJ 2K(@(2%x — 25p) — (25x0 — 29)) Wi () e =2 h(y) d(p)

and arguing as above we obtain

[FLOO <X 216406 DI e, - alhy T,

! n

where

b (x,1)=2* L [o(2%x — 24p) — (25x0 — 25) ] Yh(y) e~ 22 gy,
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Integrating by parts twice and using the mean value theorem we obtain

1
1b,(x, ] <2 273 L ID2{[@(2“x —2"y) — 9(2"x0 — 2p)TWL(1) }| dy

| X — X 1
< C2* d
n* L’k 14 2%|x — y}? Y

1

< C2k—ko
T 2 dre, T

for n#0, xel,.
An analogous estimate holds for =0 and we conclude that

1
(14+n3)(1 +2% d(x,, JL)*Y

|b,(x, )] < C2F o neZ,xel,.
It follows that

1
Fli(x)| < C2k ko
' k( )' ;14{_221( d(xo’Ji)z

Coylh, J1)
and an application of the Schwarz inequality shows that

. 1
Fi(x)|? < €22~
| k( ) 21:1+22"d(x0,.]2)2

Cylh, J4)2

Summing over j we obtain

_ 1
Fi(x)P<Q¥k—*ky k| |p2g
;l ()] ;1+22"d(x0,J£)2 Jlil o
2k
< 2(k — ko) z
2 J1+22"lx0—yl2 |A(y)I* dy

_ 2k ko) j 249/(25(xo — y)IA(Y)I? dy

S C2ET M| f17)(xo)-
Hence,
Y IFPSCM(f1P)(x0),  xelo,
j
k<ko+2
and
C(x)< CM, f(x,), xel,. (8)
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Inequality (5) follows from the estimates (6), (7), and (8) and thus the
proof of (3) is complete.

REFERENCES

1. C. FerrErRMAN AND E. M. StIN, H” spaces of several variables, Acta Math. 129 (1972),
137-193.

2. J. L. RuBio DE Francia, “A Littlewood-Paley inequality for arbitrary intervals,” Report
No. 18, Institut Mittag-Leffler, 1983.

Printed in Belgium



