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If lis an interval in IR we define an operator S/ by setting (Sd( = xJ,
where Jdenotes the Fourier transform of f Let (h) t be a sequence of dis­
joint intervals and set

Rubio de Francia [2J has proved thc following theorem.

THEOREMA. Assume that 2~p<·'l). Then there exists a constant Cp

such that

fE U(IR). (I)

It is also proved that Cp may be chosen independently of the sequence
(Ik)';'. We shall give here an alternative proof of the basic inequality in the
proof of (1).

A reduction argument in [2J shows that in proving the theorem one
may assume that

Cf)

I XS/k(X) ~ c.
I

(2 )

We let (Ik)';' be a sequence satisfying (2) and let (In denote the intervals I
in the sequence which satisfy 2k ~ III < 2k + I, k E Z. Choose integers n£ such
that n{2 k E I{. Then choose a function lp in the Schwartz class [f' such that
q)(~) = 1, I~I ~ 2, and q)(~) = 0, I~I ~ 3, where

q)(~) = f e-i21t~xlp(x) dx.
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We define operators G and M q by setting

( )
1~

Gf(x) = L [<pi * f(xW
k.;

and

1~ q < 00,

where M denotes the Hardy-Littlewood maximal operator. The main step
in the proof in [2] is the inequality

(3 )

which is proved for every bounded functionf with compact support. Here
(Gf) # denotes the sharp maximal function of Gf (see Fefferman and Stein
[1] ).

We shall give here an alternative proof of (3). Let /0 denote an interval
and assume that X o E /0' We have to prove that

(4)

where we use the notation

It is clearly sufficient to prove that there exists a constant a =a(xo, 10 ,/)

such that

_111 f fGf(x)-al dx~CMd(xo)·
10 10

(5)

We now fix Xo and /0 and prove (5). First let k o be determined by the
inequality 2 -ko- 1< 1/0 I~ 2 -ko. Then write f = g + h, where g = fx2lo' We
shall prove that (5) holds with

( )
l~

a= I. 1<p{*h(xo)1 2
•

k,,; ko + 2



330 PER SJOLIN

Using the triangle inequality in [2, we obtain

IGf(x) - al ~ IGf(x) - Gh(x)1 + IGh(x) - al ~ Gg(X)

( )

1/2 ( ) 1/2

+ I Iq>{ * h(xW + L: 1F{(xW
k~~+3 k~~+2

= A (x) + B(x) + C(x ),

where

Invoking the Plancherel theorem we conclude that

(6)

since :L1(q>{n 2 ~ c.
We shall now estimate B(x). We first set J~= [12- k-t, l2- k- 1 +2-k]

for [E 71.., k E 71... Then choose t/J~ E Cg'(lR) such that supp t/J~ is contained in
the interior of JI, LI t/J~ = 1, and

m=O, 1,2,....

We now assume that k?:: ko+ 3 and x E 10 , We have

!q>i * h(x)\ = If 2kq>(2kx - 2ky) e-i21t2
k
"'Yh(y) dyj

= II f 2kq>(2kx - 2ky) e-i21t2k"'Yl/J~(y) h(y) dy !.
I Ji

Expansion in Fourier series yields

YEJ~,

where

an(x, I) = 2kt q>(2kx - 2ky) t/JUy) e-i21t2kny dy.
k



It follows that

where
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l<p{ * h(x)1 ~LL lan(x, 1)1 !c,rk-n(h, JUI,
I n
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If J~ c 2/0 then h vanishes on J~ and if J~ ri 2/0 we integrate by parts and
obtain

lan(x,/)I~2k22~ 2f ID;[<p(2kx-2ky)t/!i(Y)]ldy
n .Jt

2k 1 1
~ C n2 f.Jt 22klx _ Yl2 dy ~ C n222kd(xo, JU2'

since Ix - y I~ 2 - ko - 3 for y E J~. Here d(xo, J) denotes the distance between
X o and J.

A similar estimate holds for n = 0 and we therefore have

for J~ ri 210. We now set

and it follows that

mE 7L,

An application of the Schwarz inequality shows that

We shall now use the estimate
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which is a consequence of the Parseval relation. We obtain

It follows that

~ C f2k°l/!(2kO(xo - Y))lh(yW dy ~ CM(lhI 2)(xo)

~CM(lfI2)(XO)' xElo,

where

1
l/!(y)=1+y2'

We conclude that

(7)

It remains to estimate C(x) and we therefore assume k ~ ko+ 2. We have

and arguing as above we obtain

IF{(x)1 ~LL Ib,,(x, 1)11c,,{_,,(h, JUI,
I "

where

b,,(x, I) = 2kL[q>(2kx - 2ky) - q>(2kxo- 2ky)] l/!~(y) e- i2n:2
k
"y dy.

k
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Integrating by parts twice and using the mean value theorem we obtain

for n#O, xElo.
An analogous estimate holds for n = 0 and we conclude that

1
Ibn(x, 1)1 ~ C2

k
-

ko
(l +n2)(l +22k d(xo, JD2)'

It follows that

and an application of the Schwarz inequality shows that

Summing over j we obtain

IIFHxW~C22(k-ko)I 2k
l

122kf Ihl 2dy
j I 1+2 d(XO,Jk) ~

f
2k

~ C22(k-ko) Ih(yW dy
1+ 22k lxo_ Yl2

=C22(k - kol f 2kl/J(2 k(xO- y) )Ih(y )1 2 dy

~ C22(k-kOlM(lfI2)(XO)·

Hence,

I IFHxW ~ CM(lfI 2)(xo),
j

k,,; ko + 2

and

xElo· (8)
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Inequality (5) follows from the estimates (6), (7), and (8) and thus the
proof of (3) is complete.

REFERENCES

1. C. FEFFERMAN AND E. M. STEIN, HP spaces of several variables, Acta Math. 129 (1972),
137-193.

2. J. L. RUBIO DE FRANCIA, "A Littlewood-Paley inequality for arbitrary intervals," Report
No. 18, Institut Mittag-Lerner, 1983.

Printed in Belgium


